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The Aggregate Impact of Consumer Reviews on
Market Outcome in Differentiated Products Market

Jun B. Kim

Seoul National University, South Korea

Abstract

We investigate the aggregate impact of consumer reviews on market outcome in a differentiated product category. We
model consumers as Bayesian learners who use online consumer reviews to learn and update their beliefs on product
quality before their choice. For our empirical analysis, we use aggregate-level, longitudinal data from Amazon.com in
the digital camcorder category and estimate the demand parameters.
Using model estimates, we conduct two simulation studies and quantify the impact of consumer reviews on the

market outcome. We report that the products experience heterogenous market share changes: the standard deviation of
market share changes across products and time is 16.7%, ranging from ¡40% to 20%. In addition, consistent with the
previous findings in experience goods, the marginal effect of low consumer ratings is greater than that of high consumer
ratings. We discuss model limitations and offer directions for further research.

Keywords: Consumer reviews, Bayesian learning, Choice model, Aggregate demand model, Differentiated products

1. Introduction

A large body of empirical research reports sig-
nificant effects of online consumer reviews

on consumer demand in books (e.g., Chevalier and
Mayzlin 2006; Pathak et al. 2010; Zhao et al. 2013), in
movies (e.g., Chakravarty et al. 2010; Yu et al. 2012;
Chen et al. 2019; Chintagunta et al. 2010), and in
video games (e.g., Zhu and Zhang 2010; Cui et al.
2012). As the underlying mechanism, it is postulated
that imperfectly informed consumers depend on
past consumers’ opinions in experience products
(e.g., Senecal and Nantel 2004) and on their own
experiences in consumer packaged goods (e.g.,
Erdem and Keane 1996) to resolve product uncer-
tainty prior to their purchase decisions. On the other
hand, other studies report a non-significant rela-
tionship between online consumer reviews and
sales (e.g., Liu 2006; Duan et al. 2008).
This paper follows the literature and posits that

intangible and experience attributes are important
to consumers in differentiated products market (e.g.,
Chen and Xie 2008; Huang et al. 2009). We model
consumers as Bayesian learners who use online

consumer reviews to learn about and update their
beliefs on product quality before their choice. We
further simulate and quantify the aggregate impact
of consumer reviews on the market outcome. Doing
so, we aim to make the following contributions to
the empirical literature on consumer reviews.
First, we study the effects of online consumer

reviews in differentiated products. Critically note
that most of the past empirical research has
focused on experience goods such as books and
movies and there is a lack of empirical research in
differentiated products. As a consequence, our
understanding of consumer reviews on this topic
may be limited.1 Nonetheless, we expect consumer
reviews to play a significant role in differentiated
products because durable goods purchase usually
involves high costs (You et al. 2015) and shoppers
may not be familiar with all the product attributes
(Huang et al. 2009).
Second, we explicitly incorporate the consumer

learning model into a choice-based aggregate de-
mand model in the context of consumer reviews.
While most of the past research has adopted
reduced-form models and studied the effect of
consumer review, we develop and apply the
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1 The only exception is Gu et al. (2012), who studied the effect of online reviews among two manufacturers in the camera category.
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Bayesian learning model to aggregate-level data. An
explicit model of consumer behaviors will allow us
to estimate how informative consumer reviews are
and how consumers use them to resolve product
uncertainties during their choice.
Last, we conduct a set of simulation studies and

quantify the aggregate impact of consumer reviews
on the market outcome under product competition.
Note that most past research in experience goods
investigated the effect of consumer reviews in
isolation without considering product competition
(e.g., Chevalier and Mayzlin 2006). However, since
competition is a core feature in differentiated
products markets, it is critical to include the feature
in the empirical analysis of differentiated goods.
We apply the proposed aggregate learning and

choice model to Amazon.com's longitudinal, store-
level data in the digital camcorder category for our
empirical application. Once we estimate the model
parameters, we compute and contrast market shares
for products across time when consumer reviews
are all turned off for all products. We report that the
products with low average consumer ratings lose
market shares in the presence of consumer reviews.
In addition, consumer reviews have a significant
aggregate impact on market shares: the standard
deviation of percentage-wise share differences is
16.7%, ranging between �40% and 20% across
products and time. Therefore, our simulation study
indirectly supports the earlier proposition that
limited consumer information has a profound
impact on the market outcome (Nelson 1970).
This paper is organized as follows. In section 2, we

review the relevant literature. In section 3, we pro-
pose a Bayesian learning model within the random
coefficients discrete choice model. In section 4, we
briefly describe Amazon.com's longitudinal data set
and conduct exploratory results on the effects of
consumer reviews on sales rank. In section 5, we
provide our empirical results and present the
simulation studies in section 6. We conclude the
paper in section 7.

2. Related literature

We discuss empirical literature on online con-
sumer reviews followed by literature on consumer
reviews and the market. A large body of empirical
research documents the link between online con-
sumer reviews and sales in experience goods cate-
gory. We review a few key papers in this section. In
their seminal paper, Chevalier and Mayzlin (2006)
use sales rank data from Amazon.com and investi-
gate the incremental effects of consumer reviews on
aggregate book sales. Among their key findings is

that consumers find one-star reviews more infor-
mative than five-star reviews. Liu (2006) and Duan
et al. (2008) use box office data and report that it is
not the consumer ratings (valence) but the volume
that can be used as a predictor for box office per-
formance. In contrast, Chintagunta et al. (2010) use
consumer review data from Yahoo Movie website
and box office data in the US market and report the
opposite: they report that, after various control
mechanisms, it is the valence of the consumer re-
views and not the review volumes that predicts
movie performance. Zhu and Zhang (2010) use data
on the video game industry and report that online
reviews impact sales and the effect is more sub-
stantial with consumers who have more internet
experience.
The second body of related literature theoretically

or empirically examines the implications of online
reviews on consumer welfare and seller's strategy. Li
and Hitt (2008) theorize that online consumer re-
views are subject to bias, leading to potential bias in
future demand. That is, online product reviews can
influence the evolution of subsequent online reviews,
which can affect downstream sales and consumer
surplus (Park et al. 2016). Chen and Xie (2008)
empirically validate that online consumer reviews
are informative of product quality and complemen-
tary to objective information provided by the man-
ufacturers. Jiang and Chen (2007) develop a
theoretical model and predict that consumer reviews
and ratings improve consumer surplus, vendor
profitability, and social welfare. They also conjecture
that a seller may have incentives to induce higher
product ratings by underpricing the products during
the early product life cycle. Wu et al. (2015) use data
set from a Chinese food review site, develop a con-
sumer learning model, and estimate the impact of
online reviews on consumers and sellers. In a series
of simulation studies, they report that the monetary
value for each consumer is about 7 CNY and about
8.6 CNY from each consumer for the reviewed res-
taurants. In our paper, we assess and quantify the
aggregate impact of consumer reviews on the market
outcome. Doing so, we aim to contribute to the
research stream that empirically studies the market-
level implications of online customer reviews.
Another related research stream is consumer

learning. In their seminal paper, Erdem and Keane
(1996) posit that consumers in the fast-moving
consumer goods (FMCG) market are forward-look-
ing and use their own past consumption experi-
ences as a major information source to learn about
and update the true product quality. For a
comprehensive review on this topic, please refer to
Ching et al. (2013). Most closely related to our paper
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regarding the learning part of the model is Nar-
ayanan et al. (2005), who use aggregate-level data
and model physicians' learning behaviors in the
prescription market. Their paper models that phy-
sicians receive noisy signals on true drug quality
from multiple sources such as detailing and feed-
back from the past patients. They report that the
learning rate is heterogeneous across physicians.
Another related paper is Zhao et al. (2013) who
develop a learning model for consumer reviews for
individual-level data and investigated their impli-
cations on retailers' profit. They estimate that con-
sumers learn more from other consumers’ reviews
on the focal book than their own experience from
the same book genre.
Last, our model is an extension of Kim (2019), who

estimated consumer demand for durable goods
using data from Amazon.com. The key difference is
that while Kim (2019) adopted a reduced form
approach and directly incorporated review valence
and volume in the utility specification, we explicitly
incorporate consumers’ learning process in the
choice model and estimate learning-related param-
eters. By doing so, we can understand how infor-
mative consumer reviews are to consumers and use
the learning parameters to explain how valence and
volume of consumer reviews affect consumer choice.

3. Model

3.1. Consumer choice

A product is broadly characterized by two sets of
attributes (Nelson 1970; Li and Hitt 2008). First,
search attributes are product characteristics con-
sumers can fully evaluate before purchase. Second,
experience or intangible attributes are product
characteristics consumers can fully evaluate only
after purchase and consumption.2 In our empirical
context of digital camcorders, brand names and
technical attributes such as zoom and screen size are
examples of search attributes. Ease of operation and
usage scenarios are examples of experience attri-
butes. While shoppers can fully learn about the
values of search attributes prior to choice, they must
resort to alternative information sources to resolve
uncertainty on experience attributes. In our empirical
context, we postulate that consumers use online
consumer reviews as an alternative information
source. Our premise is aligned with past research.
Chen and Xie (2008) report that online consumer
reviews are informative of experience attributes and

that they are complementary to information pro-
vided by the manufacturers. In their analysis, con-
sumer reviews indeed contain very little information
on search attributes because they provide very little
information on technical specification (i.e., of 0.032).
We construct consumer utility with two sets of

attributes. In the next subsection, we discuss in
detail our learning model on experience attributes
from online consumer reviews. We express the
utility of a risk-neutral shopper i ¼ 1,$$$,I, for
product j ¼ 1,$$$Jt, at time t ¼ 1,$$$,T as,

uijt ¼ Vijt þQijt þ eijt
¼ gj þXj$b1i þZjt$b2i � aiPjt þQijt þ eijt;

ð1Þ

where gj is the product-specific intercept, Xj and Zjt

are [1 � K1] and [1 � K2] row vectors representing
time-invariant and time-varying search attributes,
and Pjt price. Term eijt is an i.i.d. error term across i,
j, and t, and represents idiosyncratic consumer
tastes. Qijt is i's expectation of experience attribute j
conditional on information available at t. It is
formally defined as,

Qijt ¼El

�
Qijl

���Ijt�
where l indexes different usage or experience sce-
narios of users, Qijl is i's experience value for j on
usage case l, Ijt is all the information available for j
at t. The expectation operator is across l. Shoppers
do not have uncertainty about Vijt in the utility
function. However, shoppers are uncertain about
Qijl, and they form and use its expectation during
their choice process. Coefficient vector of bi ¼ [b1i;
b2i] is consumer sensitivities to time-invariant and
time-varying product search attributes and repre-
sented as,

bi � N
�
b0;
P

b

�
;

where b0 is the mean vector, and
P

b is a diagonal
variance-covariance matrix. Consistent with theory,
we assume that price coefficients are always nega-
tive and subject to a log-normal distribution,

expðaiÞ � N
�
aP;s

2
P

�
:

We discuss two important roles of product-
specific intercepts of gj in our utility specification.
First, the intercept term captures all unobserved
product heterogeneity (e.g., design) shoppers expe-
rience prior to choice. In contrast, the quantity of

2 In this article, we sometimes use “intangible” attribute to indicate “experience” attributes.
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Qijt captures experience attribute that shoppers
cannot observe before their choice (e.g., ease of
operation). They can only form an expectation.
Second, when studying the effect of consumer rat-
ings on sales, we must address potential endoge-
neity since it is likely that a “high” quality
simultaneously leads to higher sales and a higher
consumer rating. By including product-specific
intercept of gj we aim to control as much as possible
product heterogeneity across options and avoid any
spurious correlations between consumer ratings
and demand (e.g., Chevalier and Mayzlin 2006).
Under the assumption of GEV type I distribution for
eijt, consumer i chooses j at time t with the following
choice probability,(2)

pijt¼
exp

�
gjþXj$b1iþZjt$b2i�aiPjtþQijt

�
PJt

k¼1expðgkþXk$b1iþZkt$b2i�aiPktþQiktÞ
ð2Þ

In the next section, we model how shoppers use
consumer reviews and form Qijt during their choice.

3.2. Consuming and learning from consumer
reviews

In this subsection, we first model how Bayesian
shoppers consume one consumer review and learn
about and update their belief on experience attribute.
We then extend our model to the case of multiple
consumer review consumption. Doing so, we show
that our approach for learning leads to a parsimo-
nious model involving average consumer rating (or
numeric rating) and the number of reviews, which
are common in past empirical research. A consumer
review consists of two components: a numeric rating
(e.g., the number of stars at Amazon.com ranging
from 1 to 5) and review text. While the former
summarizes consumers’ overall evaluation of a
product, the latter typically describes the pros and
cons of the product. Departing from past empirical
research, we assume that consumers use both com-
ponents when they consume a review and learn
about products. Our key modeling premise is that,
upon consuming one online review, shoppers receive
a noisy signal around the true mean value of the
experience attribute. That is, while the numeric rat-
ing summarizes the mean experience attribute value,
the review text adds noise around the mean value.
We now formalize the above proposition. First, we

assume that shoppers at t ¼ 0 share an initial belief
for the experience attribute value of ~Qij0 that is
common across all products,

~Qij0 ¼N
�
Q0; s

2
0

�
; ð3Þ

where tilde (~) represents a random variable, and its
randomness comes from the idiosyncratic shoppers'
needs such as different usage scenarios. We model
that shopper i, consuming an online review of crj ¼
{rj, txtj} where rj is a numeric rating and txtj is a re-
view text, receives a noisy signal on the value of
experience attributes as,

~lij¼N
�
F0þF1rj;s2

u

� ð4Þ

where F0 is the base parameter, F1 is the mean
sensitivity with respect to numeric rating, and s2u is
the variance capturing the accuracy of a signal. Note
that the mean value of the signal is proportional to
rj. The randomness of a signal comes from multiple
sources in the review text. First, there can be an
information gap between the contents of the review
text (txtj) and the information needs of shoppers. In
addition, there can be idiosyncratic taste differences
between review providers and review consumers.
For instance, the preferences of early buyers may be
different from those of later buyers (Li and Hitt
2008).
We now extend our model to the consumption of

multiple consumer reviews at t. We model that the
set of consumer reviews provides shopper i at t with
a set of independent signals,

Rijt ¼
�
~lij1;~lij2;…;~lijt

�
; ð5Þ

where ~lijt is defined in Eq (4) and time subscript t
means that the review was generated at t< t.
Following the literature, we assume that the signals
are independent of one another (Erdem and Keane
1996; Narayanan et al. 2005). For this part of the
learning model development, we closely follow the
Bayesian learning model (e.g. Narayanan et al.
2005). Facing the review set of Rijt, shopper i update
their expectation on j's experience value by
computing the posterior belief as,

Qijt

���Rijt �N
�
Qijt;s

2
jt

�
ð6Þ

where,

Qijt ¼

�
1
s20

�
	

1
s20
þ njt

s2u


 $Q0þ

�
njt
s2u

�
	

1
s20
þ njt

s2u


$ X
t< t

~lijt

njt

!
; ð7Þ

where njt is the number of reviews at t or the
number of elements in the set Rijt. The variance of
the posterior experience, s2jt is,
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s2
jt ¼

1	
1
s20
þ njt

s2u


: ð8Þ

Using Eq (4) subject to the standard property
for the mean of i.i.d. normal distribution, we can
rewrite the summation term in Eq (7) as,

X
t< t

~lijt

njt
≡lijt � N

	
F0þF1$sjt;

s2
u

njt



; ð9Þ

where sjt is the average numeric rating for j at t and
is defined as,

sjt¼ 1
njt

$
X
t< t

rjt;

in which rjt is the numeric rating of crjt generated at
t< t. Now, we can rewrite Eq (7),

Qijt ¼

�
1
s20

�
�

1
s20
þ njt

s2u

� $Q0 þ

�
njt
s2u

�
�

1
s20
þ njt

s2u

�lijt; ð10Þ

Therefore, Qijt is subject to a distribution of

Qijt �N
�
mjt;s

2
mjt

�
; ð11Þ

where,

mjt ¼

�
1
s20

�
�

1
s20
þ njt

s2u

�Q0 þ

�
njt
s2u

�
�

1
s20
þ njt

s2u

��F0þF1 $ sjt
�
; ð12Þ

s2
mjt

¼

�
njt
s2u

�
�

1
s20
þ njt

s2u

�2 ð13Þ

We discuss our learning model. For the case of
multiple review consumption in Equations (12) and
(13), our approach leads to a parsimonious learning
model characterized by the average numeric rating
(sjt) and theber of reviews (njt). This is an attractive
feature and the use of these two quantities is com-
mon in past research based on reduced form ap-
proaches (e.g., Chevalier and Mayzlin 2006). Our
approach offers more rich interpretation and in-
troduces uncertainty in the learning model. By
doing so, we explicitly model how informative each
review is to shoppers during their choice process.
In total, there are five parameters to estimate in

our learning part of the model, {Q0, s20, F0;F1, s2u}.
For identification purpose, we set Q0 ¼ 0 during

estimation. Note that Eqs (11)e(13) will be used in
computing Eq (1). Using our individual-level model
of Eq (2), we predict j's market share at t as,

bsjt¼
ð 

exp
�
gj þXjbi � ajPjt þQijt

�
PJt

k expðgk þXkbi � aiPkt þQiktÞ

!

f
�
bi;ai;gj;FjU

�
dðUÞ; ð14Þ

where F ¼ {Q0, s20, F0;F1, s2u} are model parameters
associated with consumer learning and U ¼ fb0;Sb;
aP;s

2
Pg are hyper-parameters for consumer prefer-

ence. In estimating our model using aggregate-level
data, we follow the common approach in choice-
based aggregate demand models (e.g., Berry et al.
1995; Nevo 2000) and numerically integrate Eq. (3)
over consumer distributions using simulation.

4. Data

4.1. Description

We use aggregate level, longitudinal data set in
the camcorder category from Amazon.com for our
empirical application. Our empirical data in this
paper overlap those in Kim (2019). For a detailed
description of the data, please refer to Kim (2019). In
this subsection, we provide a short description of
the data. Data were collected, once every other day,
for about ten months, starting from August 2006.
The long data collection time window is attractive
for our empirical analysis since we observe product
entries and the complete trajectories of sales and
consumer reviews. In the data, we observe daily
sales rank, price, consumer reviews, and detailed
characteristics of camcorders sold at Amazon.com.
The average number of products in the choice set
across time is about 80 with a minimum of 61 and a
maximum of 103. We also have product availability
information in the data. “Seller (Amazon.com)” and
“Seller (3rd party)” indicate that a product is avail-
able for purchase from Amazon and other 3rd party
vendors, respectively. “Seller (Request)” means that
the product is unavailable but consumers can sub-
mit a request to participating vendors.

4.2. Exploratory analysis

Before estimating the proposed model, we briefly
assess the effects of consumer reviews in an
exploratory study. We first present the trajectories
of two selected products in Figs. 1 and 2. We show
the evolution of sales rank, average star rating, and
number of reviews in each figure. In the figure, a

ASIA MARKETING JOURNAL 2021;23:1e12 5



smaller rank value on the y-axis means higher
popularity. While Fig. 1 shows the trajectory of a
product with many reviews, Fig. 2 shows that of a
product with a small number of reviews. In Fig. 1,
the correlation between the sales rank and average
rating (number of reviews) is �0.55 (�0.23). In Fig. 2,
the correlation between the sales rank and average
rating (number of reviews) is �0.70 (0.69). In Fig. 2,
the valence of reviews seems to matter but not the
volume of reviews. Although these figures help
visualize the evolutions of two products, other
product characteristics may also affect the product
sales. Therefore, we use a linear regression and offer
model-free evidence for the effects of consumer
reviews on sales.
To that end, we use the following specification for

our linear regression,

log
	

1
rankjt



¼ bt þ aj þ b1$log

�
pricejt

�þ b2$log
�
sjt þ 1

�
þb3$log

�
njt þ 1

�
þb4$SellerAmznjt þ b4$SellerPartnerjt þ ejt;

j¼ 1;…; Jt; t ¼ 1;…;T

where rankjt is j's raw sales rank at t, bt and aj are
time and product fixed effects. In addition, sjt is the
average numeric rating and njt is the number of
consumer reviews at t. Note that aj captures the
effects of all time-invariant product characteristics
such as brand name and number of pixels. The
dependent variable in our model is the log of the
inverse of sales rank. In the absence of sales data,
the inverse of sales rank can be used as a proxy for
sales (Chevalier and Mayzlin 2006). Taking the log
of all time-varying independent variables, we can
directly interpret the parameter estimates as
elasticity.
The parameter estimates are shown in Table 1.

The signs of key coefficients are all intuitive. Among
them, the coefficients of price and average numeric
rating are significant, while that of the number of
consumer reviews is not. Our logelog model esti-
mates the price elasticity at -1.66. Concerning con-
sumer reviews, the average star rating elasticity is
significant at 0.46, while volume elasticity is insig-
nificant at 0.02. Our results on consumer review
variables are opposite from those in Gu et al. (2012):
they report an insignificant effect of valence and a
significant effect of review volume. We speculate

Fig. 1. Product with many reviews. Panel (A) shows the evolution of the sale rank (circle, left vertical axis) and the average consumer rating (inverted
triangle, right vertical axis). Lower sales rank indicates higher popularity. Panel (B) shows the evolution of the sale rank (circle, left vertical axis) and
the number of reviews (inverted triangle, right vertical axis).

Fig. 2. Product with smaller number of reviews. Panel (A) shows the evolution of the sale rank (circle, left vertical axis) and the average consumer
rating (inverted triangle, right vertical axis). Panel (B) shows the evolution of the sale rank (circle, left vertical axis) and the number of reviews
(inverted triangle, right vertical axis).
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that the different results may be due to different
empirical settings between the two papers. We
include a larger number of brands in the analysis as
we include the top five manufacturers over 10
months. They have camera data from the top two
manufacturers for five months. Given the difference
in the number of brands, consumer reviews may
play a lesser role when the number of brands is
small, primarily when the data are confined to well-
known brands (Kostyra et al. 2016). In addition,
there are differences in the selection of the inde-
pendent variables in the analysis. While we condi-
tion our analysis to consumer review data from
Amazon.com, they include a richer set of consumer
review data from many online sources. Lastly, our
estimated elasticity of average numeric rating falls
within the range reported in the meta-analysis (You
et al. 2015). Nonetheless, the difference between
these two papers may support our view that we
need more empirical research in differentiated
products.
Although our regression analysis is informative, it

has a key limitation. Our regression analysis ignores
the competitive effects since the specification does
not reflect product competition in the analysis. In
addition, the regression analysis does not allow us
to study the mechanism, such as how informative
consumer reviews are and how shoppers use them
to resolve product uncertainty (Zhao et al. 2013).
Our learning model within the choice model ad-
dresses such limitations by explicitly modeling
consumer learning behaviors.

5. Empirical analysis

5.1. Overview

The estimation of the proposed model overall
follows the approach outlined in Kim (2019). The
key innovation we introduce to the estimation in
this paper is the additional estimation layer that
corresponds to consumer learning. For computation
of Qijt in Eq (3) during estimation, we use Eqs

(11)e(13). Given the model parameters and (sjt, njt),
we compute the mean and variance of Qijt using Eq
(12) and Eq (13). Then we repeatedly draw Qijt using
Eq (11) as i's expected experience value in the
simulation process. Once we simulate Qijt, we can
compute individual choice probability using Eq (2).
The dependent variables in our empirical analysis

are sales rank. We convert daily sales rank data into
a set of pairwise indicator variables. In our
approach, the dependent variables of {Ijkt} are
defined as,

Ijkt ¼
�
1 if srjt> srkt
0 otherwise ð15Þ

where srjt is j's sales rank at t, srjt > srkt means that j is
more popular than k at t.
We link the predicted market share to the

observed sales rank following the recipe in Kim
(2019). The prediction of j's market share at t, bsjt , is
the sum of the true, unobserved market share of sjt
and an error term,

bsjt ¼ sjt � 3jt; ð16Þ

where 3jt � N
�
0; s

2
v
2

�
is an i.i.d. random variable.

Then, we express the probability of observing a
pairwise rank inequality between j and k at t as,

Pr
�
Ijkt ¼1

�¼F

	bsjtðQ;U;XÞ �bsktðQ;U;XÞ
sv



; ð17Þ

where F ($) is CDF of standard normal distribution.
Our likelihood function and the corresponding MLE
is,

�
Q*;U*;s*

v

�¼arg max
fQ;U;svg

YT
t

YJt
j

YJt
ksj

F

	bSjtðQ;U;XÞ � bSktðQ;U;XÞ
sv



where j, k ¼ 1, …,Jt, and t ¼ 1 …,T.
We briefly discuss the identification of key model

parameters. As the choice-based aggregate demand
model serves as the backbone of the proposed
model, our key consumer preference parameters are
identified through the conventional mechanism
documented in the literature (e.g., Berry et al. 1995).
The mean consumer preference parameters are
identified by the correlation between product attri-
bute values and sales popularity across products
and time. Consumer heterogeneity parameters are
identified by the correlation between product attri-
bute values and the difference between the

Table 1. Regression estimation result.

Variables Estimates (std. err.)

log (price) �1.66 (0.06)
log (sjtþ1) 0.46 (0.03)
log (njtþ1) 0.02 (0.02)
Seller_amazonjt 0.42 (0.27)
Seller_partnerjt 0.13 (0.27)
Product FE Yes
Time FE Yes
R2 0.81
Number of observations 5142
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predicted and actual sales popularity (Berry et al.
1995). That is, given the candidate of mean con-
sumer parameters, we can predict sales popularity.
Consumer heterogeneity absorbs the difference
between the predicted and actual popularity across
products and time in the data. Among the consumer
learning parameters, F1 is identified by the corre-
lation between consumer numeric ratings and sales
popularity across products and time conditional on
consumer preference parameters. Lastly, the corre-
lation between the changes in sales popularity and
the changes in the number of consumer reviews
across products and time identifies the consumer
review variance of s2u.

5.2. Results

We present the estimated model parameters in
Table 2. The estimated brand coefficients are intui-
tive. Among the mean brand coefficients, Sony has
the greatest value (0.78), followed by Panasonic.
Among the media formats, Mini-DV has a higher
mean consumer preference of �0.73 than other
formats. In addition, an average shopper prefers
higher pixel numbers and higher zoom capability.
We report a large heterogeneity for brands and
media formats, consistent with the industry report
that these are important attributes for shoppers.
Next, we find that shoppers would prefer to buy
directly from Amazon.com than from third-party
vendors. Next, we discuss consumer learning pa-
rameters associated with consumer reviews. The

coefficient of F1 is positive and significant, implying
that a higher average numeric rating (i.e., more stars
at Amazon.com) makes a positive contribution to
consumer utility. This finding is consistent with our
regression result in section 4.2. From the estimated
heterogeneity parameters, we find that the magni-
tudes of s0 (for prior mean experiential value) and
su (for each review) are similar. This implies that
each consumer review text contains a large degree
of uncertainty on the products’ experience values
and hence one review text is not as informative as
the initial uncertainty level. However, the uncer-
tainty level decreases rapidly with the increasing njt
because the variance term is inversely proportional
to njt in Eq (13).
In the next section, we provide a set of simulation

studies and quantify the effects of customer reviews
on market share changes subject to product
competition in the market. Our approach contrasts
with past literature that mainly focused on the ef-
fects of customer reviews without considering
product competition (e.g., Chevalier and Mayzlin
2006). Although such an approach may be tenable in
experience goods categories such as books and
movies, we believe product competition must be
fully considered for a comprehensive analysis of
demand in differentiated products category.

6. Consumer reviews and market outcome

6.1. The effects of provision of reviews for a focal
product

Our first simulation study investigates how the
market share for focal product j would change when
the consumer reviews are turned off for all products
except j. That is, we compute and compare j's mar-
ket shares for the following two cases.

(a) Case A: consumer reviews are turned on for
product j only

(b) Case B: consumer reviews are turned off for all
products

We then repeat the above comparison for all
products j ¼ 1,…Jt, and compare the percentage-wise
share change for each product. This simulation study
allows us to study the effect of consumer reviews for
product j in isolation while suppressing the review
effect for the rest of the product. We can therefore
assess the value of consumer reviews for each
product. For the market share simulation, we draw
10,000 consumers from the joint distribution and
predict their choice probabilities. We then aggregate
them to compute market shares at each period. We
repeat this process under the above two scenarios.

Table 2. Estimated model parameters.

Variables mean effect
(s.e.)

Heterogeneity
(s.e.)

Sony 0.78 (0.18) 1.77 (0.43)
Panasonic �0.16 (0.08) 1.77 (0.43)
Canon �0.31 (0.09) 1.77 (0.43)
JVC �0.84 (0.21) 1.77 (0.43)
MiniDV �0.73 (0.23) 2.12 (0.49)
DVD �1.02 (0.23) 2.12 (0.49)
FM �1.12 (0.27) 2.12 (0.49)
Compact �7.25 (1.88) 5.29 (1.33)
Hi-Def 0.01 (0.25) 2.27 (0.51)
Zoom 0.02 (0.02) 0.03 (0.03)
Pixel 042 (0.13) 0.17 (0.11)
Log (Price) �6.25 (1.47) 1.16 (0.33)
Seller (Amazon) 0.98 (0.26) 0.03 (0.01)
Seller (Partner) 0.78 (0.20) 0.03 (0.01)
s0 0.94 (0.22) NA
F0 �0.87 (0.21) NA
F1 0.36 (0.03) NA
sw 1.04 (0.24) NA
sv 0.01 (0.12) NA
Product FE Yes
Number of inequalities 147,965
Loglikelihood �47,132
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Fig. 3 shows the simulation results. In the figure,
each dot represents a product, the horizontal axis
represents the average consumer rating (sjt), and the
vertical axis represents the simulated percentage-
wise market share difference. The mean and stan-
dard deviation of share difference between the two
cases are 39.7% and 24%, respectively. In this Figure,
we note that the products with higher numeric rat-
ings experience higher share improvement when
reviews are exclusively available for them. In addi-
tion, the curve in the Figure shows a nonlinear
pattern since the curve is relatively flat between 1
and 3 average star ratings but it becomes steeper
after 3.5 average star ratings. This result implies that
the provision of reviews further differentiates the
focal product from the rest of the products, leading
to a substantial impact on market share changes.

6.2. The effects of provision of consumer reviews on
market shares

In this section, we quantify the aggregate effect of
consumer reviews on the market outcomes. To that
end, we compute the market shares for all products
under the following two cases and compare their
market share changes,

(1) Case C: consumer reviews are turned on for all
products across time

(2) Case D: consumer reviews are turned off for all
products across time

Case C is the current practice at Amazon.com, and
case D is a hypothetical case in which consumer

reviews are unavailable for all products across time.
After computing the market shares for all products
under the two cases, we compare the percentage-
wise share differences for all products across time.
This simulation study is equivalent to quantifying
the effects of the provision of customer reviews on
market shares while we fully take product compe-
tition into account.
Fig. 4 visualizes the percentage-wise market share

differences between two scenarios for all products
across time. The positive share difference means
that products gain market shares under consumer
reviews and the negative difference indicates mar-
ket share loss. This figure clearly shows that prod-
ucts with higher numeric ratings gain substantial,
incremental market shares. In contrast, the aggre-
gate effects from the number of reviews are quite
muted compared to those from consumer ratings.
For better visualization, Fig. 5 shows the two-
dimensional view of Fig. 4.
In this figure, the horizontal axis represents the

average consumer rating (sjt) while the vertical axis
represents the simulated percentage market share
difference. In this graph, the dotted line represents
the average percentage share difference at each
level of numeric rating values. We note a few key
points. First, the average percentage share differ-
ence across products and time is very substantial:
the standard deviation of the percentage-wise share
difference is 16.7% and the share changes range
between �40% and 20%. This result implies that
consumers resolve product uncertainty through
consumer reviews and redirect their choices when
consumer reviews are available. It also has a strong

Fig. 3. The effect of consumer reviews in the first simulation study in
which we keep the consumer reviews for the focal product while turning
them off for the rest of the products. The graph shows that products with
higher consumer ratings would experience additional market share
gains when the platform shows the consumer ratings for the focal
products while turning the consumer reviews off for the rest of the
products.

Fig. 4. 3D scatter plot of market share difference (%) with and without
consumer reviews across products and time.
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implication on consumer welfare, as predicted in
Jiang and Chen (2007): consumer welfare may in-
crease under the provision of consumer reviews.
Next, products with average numeric ratings below
3.5 stars experience market share loss in the pres-
ence of consumer reviews. In contrast, products
with numeric ratings above 3.5 stars are predicted to
gain market shares. Therefore, shoppers may
consider average ratings below the threshold of 3.5
as a negative signal. Our finding is consistent with a
recent research that reports the importance of the
negative word of mouth (WOM) on firm value (Jeon
et al. 2020). In this figure, the negative signals have
larger marginal effects since products with average
ratings around 1 and 2 experience up to 40% share

loss while products with four and above star ratings
experience up to 20% share gain. Our simulation
study provides much more detailed insights.
Last, Fig. 6 shows the percentage share difference

(y-axis) with average numeric ratings (x-axis) across
time for all products. Darker colors represent
products with higher sales ranks (i.e., more popular
ones). The correlation between sales rank and
average consumer ratings is very high at 0.89 in the
data. Combined with the results from the simulation
study, we find that higher consumer ratings lead to
higher market share gains. We came to this
conclusion after fully controlling the product het-
erogeneity by introducing product fixed effects in
the utility specification. Therefore, we infer that
popular products generate positive reviews over
time, which contributes to even higher sales in the
future. In summary, consumer reviews serve as an
amplification mechanism for popular products,
reinforcing their popularities and polarizing the
market outcome. Overall, both simulation studies
inform us that the effects of consumer reviews on
durable goods are substantial.

7. Conclusion

In this paper, we investigate and quantify the
aggregate impacts of consumer reviews on the
market outcome in differentiated products market.
Our key premise in this paper is that differentiated
products have both search and experience attributes
and shoppers depend on consumer reviews to learn
about and resolve product uncertainty during their
choice. To that end, we develop and incorporate the
Bayesian learning model into a choice-based
aggregate demand model. By doing so, we aim to
broaden our understanding of the role of consumer
reviews in a differentiated product category.
From the simulation studies, we find that con-

sumer numeric ratings of three stars or below
negatively affect consumer utility and that these
products would be better off without consumer re-
views. After accounting for market competition, we
also find that products with higher average star
ratings gain market shares when online consumer
reviews are available for all products. The standard
deviation of percentage-wise share differences is
16.7%, and this considerable value implies a large
impact of consumer reviews on consumer welfare.
Lastly, we report that more popular products are
likely to experience greater market share gains from
favorable consumer reviews, leading to a polarized
market structure.
We discuss a few limitations of our study. First, we

did not consider the outside options in our model

Fig. 5. 2D scatter plot of percentage market share differences with and
without consumer reviews across products and time.

Fig. 6. Share difference for products with and without consumer reviews
across time.
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and estimation due to the data limitation and tech-
nical challenges. We have sales rank data as our
dependent variable and cannot observe or reliably
estimate the size of outside goods. Second, we
assumed that consumers choose from the universal
set of products. However, recent advances in
empirical models of consumer search (e.g., Moe
2006; Ursu 2018) may allow us to impose limited
consideration sets on consumer choice. We also note
that consumers’ choice set may be affected by seller-
initiated actions such as product recommendations.
Third, we do not model forward-looking consumers.
This may be important since the products in con-
sumer electronics categories often exhibit price de-
clines over time, leading to dynamics in consumer
demand. Last, we do not explicitly address price
endogeneity as in Berry et al. (1995) due to our
empirical setting and data. Instead, we expect the
product-specific intercepts in the utility specifica-
tion to mitigate, if not altogether remove, the price
endogeneity.
There are a few natural extensions for this

research. First, developing a full learning model
may be desirable by incorporating other informa-
tion sources such as past sales rank or price. Given
the lack of empirical research on the relationship
between market share and quality, such a model
may enhance our understanding of this topic. Sec-
ond, our implicit assumption that shoppers
consume most of the consumer reviews may not be
tenable in practice. With more detailed individual-
level data, it may be possible to model selective
consumption of online consumer reviews among
shoppers, leading to a more realistic model. Last,
the consumer review effect may be moderated by
product characteristics such as price. We leave these
for future research.
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